

Characterization and Far-Field Plume analysis of the HET-X Hall Effect Thruster

High Power Electric Propulsion Lab

Adrian Vicente, Ph.D.(c)

Dan Lev, Ph.D.

Mitchell Walker, Ph.D.

Earth Observant Inc. Michael Holmes, Ph.D. Nate Rosenblad

08/08/2024

- Space electric propulsion (EP) is a branch of in-space propulsive technology. It encompasses any propulsion technology in which electrical power is used to increase the propellant exhaust velocity.
- EP serves as an attractive alternative to conventional chemical propulsion due to its **high specific impulse** (*I*_{sp}) and **fuel efficiency**. By achieving higher exhaust velocities, an equivalent delta-V can be accomplished for a fraction of the propellant mass.
- Across both large spacecraft and SmallSat missions, EP is consistently favorable for long-duration and high delta-V missions.

Propulsion Category	Thruster	Specific Impulse (s)	Total Efficiency (%)	
Chemical	Monopropellant	150 - 225	-	
Chemical	Bipropellant	300 - 450	-	
Electric	Arcjet	500 - 600	24 - 45	
Electric	Hall Thruster	1500 - 3000	35 - 60	
Electric	lon Thruster	2500 - 6000	40 - 80	Electric thruster use NASA's DART miss

• A Hall Effect Thruster (HET) is an electrostatic thruster that uses crossed magnetic and electrostatic fields to ionize and accelerate its propellant.

Hall Effect Thruster

- Compared to other EP technologies, HETs boast greater thrust output and thrust efficiency at high power levels.
- In the last decade alone, they have successfully flown on thousands of spacecraft in the private and public sectors. Research and development of HETs has expand their role to deep-space and VLEO applications.

OKB Fakel SPT-100, 1.35kW Thruster

Busek BHT-100, 100W Thruster

Georgia Tech

Georgia High Power Electric Propulsion Lab

- While reliable, HETs remain poorly understood and are thus difficult to predictively model.
- HET development is a largely empirical process guided by heavily iterative design cycles. Highly specialized facilities are required for this.
- Georgia Tech's High Power Electric Propulsion Lab (HPEPL) focuses on the characterization of EP devices, plasma physics, and vacuum test facility effects on the performance of EP devices.
- VTF-2 Specifications:

Length:	9.0 m
Diameter:	4.2 m
Pumping speed:	350,000 L/s Xe

HPEPL, Vacuum Test Facility 2 Exterior

HPEPL, Vacuum Test Facility 2 Interior

- HPEPL entered collaboration with EOI Space in the development of their HET prototype: **HET-X**.
- HET-X operates at moderate-to-high operating power, has a small form factor, and is designed to operate on **various propellants**.

HET-X, Front View

HET-X experimental installation

0.6 Total Power (kW)

6

0.8

••

· All setpoints 🔺 Max Isp

Max T/P

1.0

1.2

Thruster Design 80

60 (mN/kW) 200 40 30

70

Γ 20

10

04

HET-X channel dimension adjustment

Phase 2 **Plasma Characterization**

Plasma diagnostics employed on HET

- The objective is to obtain empirical performance trends and identify the optimal thruster inputs for a desired configuration.
- The design space is greatly reduced by first generating an **IVB map**. After this, a detailed ٠ survey is performed in which all six thruster inputs are varied. Thrust, propellant flow, and power consumption are measured. Efficiency is computed.

HET-X Setpoint Survey, n vs P

7

 The performance survey identified two optimal thruster configurations: Max. I_{sP} and Max. T/P Ratio.

Operation of HET-X thruster prototype

Table 1. HET-X Inputs for 1	nax I _{sp} and T/P configs.
------------------------------------	--------------------------------------

Configuration	Max. I _{sp}	Max. T/P
Discharge Voltage [V]	340	150
Discharge Current [A]	1.88	3.84
Inner Magnet Voltage [V]	10.26	10.44
Inner Magnet Current [A]	2.53	2.53
Outer Magnet Voltage [V]	4.39	4.81
Outer Magnet Current [A]	0.88	0.88
HC Keeper Voltage [V]	26	20
HC Keeper Current [A]	0.2	0.2
Total Power [W]	674	611
Cathode-to-Ground [V]	-15.5	-15.0
Anode Flow [Xe mg/s]	2.44	3.90
Cathode Flow [Xe mg/s]	0.29	0.97
Facility Pressure [Torr]	1.00E-06	2.20E-06

8

Georgia Tech Far-Field Plasma Diagnostics

- Traditional plasma diagnostic probes are invasive and known to strongly perturb the discharge plasma of an HET.
- In HET characterization, plasma diagnostics must be swept through the far-field plume (~1m downstream).
- The efficacy of internal ionization and acceleration processes must be inferred from downstream measurements.

Far-Field Probes (left) and HET-X thruster (right)

Hemispherical sweep footage

Georgia Tech Characterization; Voltage Util. Eff.

- The voltage utilization efficiency, η_v , describes how much of the voltage provided by the discharge supply is effectively used to accelerate the ions.
- A **Retarding Potential Analyzer** (RPA) is comprised of several biased grids which decelerate incoming ions. This prove ascertains the ion energy distribution function.
- Voltage Utilization efficiency is defined as the most probable ion energy per charge divided by discharge voltage.

$$f(E_i/q_i) = -\left(\frac{m_i}{A_C q_i^2 e^2 n_i}\right) \frac{dI_C}{dV_3} \propto -\frac{dI_C}{dV_3}$$
$$V_{RPA} = V_3 \left(-\frac{dI_C}{dV_3}\right)_{max}$$
$$\eta_v = \frac{V_{RPA}}{V_D}$$

RPA Probe

RPA Electrical Schematic

RPA trace of Max I_{sp} config. at 0° from centerline

Georgia Tech Characterization; Divergence & Current Eff.

- The **divergence efficiency**, η_d , describes how much of the kinetic energy imparted to the ion is axial and thus produces thrust.
- The current utilization efficiency, η_b , describes how much of the discharge current is carried by ions instead of electrons.
- A **Faraday Probe** is employed to measure the ion current density profile of the HET.

$$I_B = 2\pi R^2 \int_0^{\pi/2} j[\theta] \frac{\kappa_D}{\kappa_A} \sin(\theta) \, d\theta$$

$$I_A = 2\pi R^2 \int_0^{\pi/2} j[\theta] \frac{\kappa_D}{\kappa_A} \cos(\alpha_A) \sin(\theta) \, d\theta$$

$$\lambda = \cos^{-1}(I_A/I_B)$$
$$\eta_d = (\cos(\lambda))^2 \qquad \eta_b$$

Faraday Probe

Faraday Probe Elec. Schem.

Ion current density at 1.0 m from thruster face

- **Divergence efficiency** was identified as a mode for improvement.
- The prototype has demonstrated performance characteristics that are comparable to those of similar subkW HETs from other established developers.
- This initial round of HET-X development was performed in 2022. Since then, several design iterations have passed to improve the efficiency and reliability.
- Subsequent research consisted of improving performance on various other gases to verify its "propellant agnosticism."

Configuration Max. I_{sp} Max. T/P Thrust [mN] 37.8 42.8 Specific Impulse I_{sp} [s] 1576.0 1116.2 T/P Ratio [mN/kW] 56.0 70.2 Total Efficiency η [-] 30.8% 38.7% Beam Efficiency η_h [-] 92.4% 89.5% Divergence Efficiency $\eta_d[-]$ 85.4% 80.0% Volt. Util. Efficiency η_{V} [-] 93.6% >85.4%

Table 2. HET-X performance for max I_{sp} and T/P configs.

Table 3.	Comparative	HET Performan	ce on Xenon [19	9]
----------	-------------	---------------	-----------------	----

Manufacturer	Product	P (W)	T (<u>mN</u>)	$I_{sp}\left(\mathbf{s}\right)$
Astra	ASE	400	25	1400
Busek	BHT-600	600	39	1495
EDB Fakel	SPT-70M	660	41	1580
EOI	HET-X (max I _{sp})	674	38	1576
EOI	HET-X (max T/P)	611	43	1116
Safran	PPS-X00	650	43	1530
SITAEL	HT400	615	28	1116

Georgia Tech Acknowledgements

Prof. Mitchell Walker Georgia Tech

Prof. Dan Lev

Georgia Tech

G

Georgia Tech.

Michael Holmes EOI

Nate Rosenblad

EOI

HPEPL, highly-caffeinated undergraduate research assistants

